A characterization of quaternionic projective space by the conformal-Killing equation
نویسنده
چکیده
We prove that a compact quaternionic-Kähler manifold of dimension 4n ≥ 8 admitting a conformal-Killing 2-form which is not Killing, is isomorphic to the quaternionic projective space, with its standard quaternionicKähler structure.
منابع مشابه
almost-quaternionic Hermitian manifolds
In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.
متن کاملReal Hypersurfaces in Quaternionic Projective Spaces with Commuting Tangent Jacobi Operators
From the classical differential equation of Jacobi fields, one naturally defines the Jacobi operator of a Riemannian manifold with respect to any tangent vector. A straightforward computation shows that any real, complex and quaternionic space forms satisfy that any two Jacobi operators commute. In this way, we classify the real hypersurfaces in quaternionic projective spaces all of whose tange...
متن کاملEssential Parabolic Structures and Their Infinitesimal Automorphisms
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generali...
متن کاملNonlinear Dirac Operator and Quaternionic Analysis
Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy– Riemann–Fueter equation are established.
متن کاملQuaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles
This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008